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Abstract

We present a computational study of the forces on a cylinder oscillating harmonically in the direction perpendicular

to a uniform flow. The two-dimensional Navier–Stokes equations are solved on a coordinate system fixed on the

cylinder. The Reynolds number is equal to 400. Several oscillation frequencies are considered: (a) resonant forcing, (b)

forcing at frequency below the natural frequency of the wake, and (c) forcing at frequency above the natural frequency

of the wake. Once the flow has reached a statistical steady state, the lift and drag forces on the cylinder are computed.

The lift force in particular is decomposed into one component that is in phase with the velocity (excitation force), and

one component that is 180� out of phase with the acceleration (inertia or added mass force). The variation of the forces

as a function of the amplitude-over-diameter-ratio is studied in detail. It is found that the scaling of the so-called inertia

component of the force with the acceleration of the cylinder can lead to serious problems at small amplitudes of

oscillation, and that it is overall preferable to scale both components of the force with the dynamic pressure of the fluid.

Through extensive flow visualization, it is shown that changes in the state of the flow are related to the abrupt changes

of the forces with the amplitude-over-diameter-ratio. Moreover, qualitative differences are found between the results

for the below resonance and the resonant or above resonance forcing. The former are characterized by smooth variation

of the hydrodynamic force coefficients and spatially ordered vortex streets. The latter are characterized by continuous

and sharp, even jump-like, changes of the forces, and a variety of vortex patterns in the wake, resulting for some

combinations of frequency and amplitude of oscillation to spatially disordered vortex streets.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow in the wake of a vibrating cylinder is a system with very rich physics that depends strongly on the frequency

and amplitude of the oscillation. This flow has been the subject of many papers, far too many to cite here [see review

articles by Sarpkaya (2004), Bearman (1984) and Williamson and Govardhan (2004)]. Moreover, measured forces on
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cylinders forced to vibrate harmonically can be used to calculate the monochromatic response of flexible structures to

vortex-induced vibrations.

Despite the large volume of such experimental data, a systematic investigation that relates the variation of the

hydrodynamic forces to the flow patterns in the wake is missing. Numerical investigation of the flow past an oscillating

cylinder at low Reynolds number has been done by, among others, Blackburn and Henderson (1999), Anagnostopoulos

(2000), Baek et al. (2001), Blackburn et al. (2001) and Guilmineau and Queutey (2002), but for a very limited number of

frequencies and amplitudes of oscillation, not sufficient to offer a picture of the dependence of the forces on these

parameters.

In this paper we investigate the forces on a vibrating cylinder through time-dependent simulation of the

Navier–Stokes equations. Several frequencies near the natural frequency of the wake are considered, and for each the

force coefficients are calculated as a function of the amplitude-over-diameter-ratio. Amplitude-over-diameter-ratios for

which energy is transferred from the fluid to the cylinder are of interest, since only those correspond to potential vortex-

induced vibrations. Two-dimensional flow is considered for expediency. Here, we try to find a relation between the

forces on the cylinder and the vortex patterns in the wake. The relevance of our results to real situations is limited by the

low value of the Reynolds number and the two-dimensionality of the flow. We do expect, however, that some basic

conclusions will be useful to higher Reynolds number too, and that the present detailed study can serve as a guide and

reference point to the much more computationally expensive three-dimensional simulations.
2. Formulation and numerical method

We consider uniform flow past an oscillating cylinder. The velocity of the fluid far upstream of the cylinder is U1, the

density and kinematic viscosity of the fluid are, respectively, r and n. The coordinate axes are x, parallel to the flow, and

y, normal to the flow. The cylinder has diameter D and is oscillating transversely to the flow with amplitude A and

circular frequency o. The instantaneous displacement of the cylinder Z from its mean position is given by

Z ¼ A sinðotÞ. (1)

Let Fy be the lift force on the cylinder (per cylinder unit length), resulting from the integration of the pressure and

viscous stresses around the cylinder. For a locked-in wake, Fy is also harmonic with the same frequency, and can be

decomposed into the excitation force and the inertia or added mass force:

Fy ¼ Fv cosðotÞ þ FM sinðotÞ, (2)

where Fv;FM are the amplitudes of the excitation and added mass forces, respectively. If the force is harmonic, Fv;FM

can be calculated from Fy using the following relations:

Fv þ iFM ¼
2

T

Z T

0

Fy expðiotÞdt, (3)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and T ¼ 2p=o is the period of the cylinder oscillation.

It is customary to scale Fv;FM as follows:

Fv ¼
1
2
rU2
1DCLv, (4)

FM ¼
p
4
rD2Ao2CM , (5)

where CLv and CM are nondimensional parameters. It is assumed, in other words, that Fv is proportional to the

dynamic pressure 1
2
rU2
1, and that FM is proportional to the acceleration of the cylinder. This decomposition is not

consistent however, since Fv and FM are components of the same force. We will therefore consider scaling FM with the

dynamic pressure also, i.e.

FM ¼
1
2
rU2
1DCLa, (6)

where CLa is another nondimensional parameter. It is straightforward to show that CLa ¼ 2p3ðA=DÞðD=U1TÞ2CM ,

where T is the cylinder oscillation period.

When Fv and FM are scaled based on the dynamic pressure, it is reasonable to also scale the whole lift force Fy the

same way, i.e. to set

Fy ¼
1
2
rU2
1DCL, (7)
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where CL is the nondimensional transverse force (lift coefficient), which is a function of time, and can be decomposed

into the time-averaged value hCLi and the instantaneous fluctuation C0L.

We can use the root mean square (r.m.s.) of C0L, which we will denote by CL;r:m:s:, to characterize the fluctuations of

the lift force. When the force on the cylinder is harmonic in time, it is straightforward to see that

CL;r:m:s: ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

Lv þ C2
La

q
. (8)

From dimensional analysis it follows that CLv, CM , CLa, and CL are all functions of the reduced amplitude x ¼ A=D,

of the nondimensional excitation frequency f e ¼ oD=ð2pU1Þ, and of the Reynolds number.

Also, let Fx denote the drag force on the cylinder, per cylinder unit length; the drag coefficient CD is defined from the

relation:

Fx ¼
1
2
rU2
1DCD. (9)

The drag coefficient can be decomposed into its time-averaged component hCDi and its fluctuating component C0D:

CD ¼ hCDi þ C0D, (10)

where

hCDi ¼
1

T

Z T

0

CD dt. (11)

We will denote the r.m.s. of C0D by CD;r:m:s.

The main goals of this paper are to study, through numerical simulation, the variation of these hydrodynamic

coefficients with the nondimensional oscillation amplitude and frequency, to relate the results to the wake structure, and

to test the scaling assumptions made for the forces.

One additional parameter that is of interest is the mean power dissipation in the flow. Since the flows that we are

considering have reached a statistical steady state, the mean power dissipation gives a quantitative indication of how

energetic the flow is (the more energetic the flow, the higher the mean dissipation rate). If we denote by hPdi the mean

power dissipation, application of the fist law of thermodynamics gives the following expression for hPdi:

hPdi ¼ hFxiU1 � Fy
dZ
dt

� �
, (12)

where dZ=dt is the lateral velocity of the cylinder. By dividing by 1
2
rDU3

1 and using Eqs. (9), (11), (2), (1) and (4), we

obtain

hPi ¼ hCDi � pCLv
A

D

� �
f e, (13)

where hPi ¼ hPdi=ð12rDU3
1Þ is the nondimensional mean power dissipation, and f e is the nondimensional oscillation

frequency of the cylinder.

The governing equations are the Navier–Stokes and incompressibility equations. For convenience, we have

nondimensionalized all lengths with respect to D, all velocities with respect to the free stream velocity U1, time with

respect to D=U1, and pressure with respect to rU2
1. Then the incompressibility and Navier–Stokes read:

r �~u ¼ 0, (14)

q~u
qt
þ~u � r~u ¼ �rpþ

1

R
r2~u, (15)

where R ¼ U1D=n is the Reynolds number of the flow. Throughout the paper R ¼ 400, a value very close to that in the

experiments of Williamson and Roshko (1988).

The boundary conditions for the flow are as follows. (i) On the instantaneous position of the cylinder the velocity of

the fluid is equal to that of the cylinder, i.e.

~u ¼
dZ
dt
~j, (16)

where Z is now the nondimensional cylinder displacement, and ~j is the unit vector in the y direction. (ii) Far upstream

and at the sides of the domain we have uniform flow, i.e. ~u ¼ 1~i where ~i is the unit vector in the x direction (the

dimensional velocity is equal to U1). (iii) Finally, far downstream we assume a Neumann condition for the velocity,

q~u=qn ¼ 0.
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Fig. 1. Spectral element skeleton for flow around a circular cylinder, including elements close to the cylinder, and the entire mesh.
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In order to avoid reconstructing the computational grid at each time step, we use coordinates that are fixed on the

cylinder. With ~u now representing the relative, with respect to the moving cylinder, velocity, Eq. (14) remains

unchanged, while, as is well known, (15) becomes

q~u
qt
þ~u � r~u ¼ �rpþ

1

R
r2~u�

d2Z
dt2

~j, (17)

i.e. we have the appearance of a d’Alambert acceleration at the right-hand side. This of course means that, in order to

find the actual force on the cylinder, one has to subtract from the computed force a ‘‘dynamic Archimedes’’ force equal

to �ðp=4ÞrD2 d2Z=dt2~j.
Moreover, the boundary condition on the cylinder is reduced to ~u ¼ 0, while at the inflow and lateral boundaries we

have ~u ¼ 1~i � dZ=dt~j, whereas the Neumann condition is maintained at the outflow boundary.

Eqs. (14), (17) subject to the new boundary conditions are solved using a Legendre spectral element method, e.g. see

Karniadakis (1989), with the time discretization based on a second-order accurate mixed stiffly stable scheme

(Karniadakis et al., 1991). We have implemented the same numerical methodology in a number of previous

investigations, e.g. see Delaunay and Kaiktsis (2001), Kaiktsis and Monkewitz (2003). The spectral element skeleton

used is shown in Fig. 1. The inflow boundary is located at x=D ¼ �20, the lateral boundaries at y=D ¼ �17, while the

outflow boundary is at x=D ¼ 60. We have implemented a discretization consisting of 464 macro-elements, with 9� 9

elemental resolution. Typically, the values of the numerical time step were of the order of 0.0015 or lower. In selecting

domain size and resolution parameters, we have been guided by previous numerical studies; see Evangelinos and

Karniadakis (1999), Blackburn and Henderson (1999). Resolution tests, illustrating the adequacy of the present

discretization, are presented in Appendix A.
3. Results

We present detailed results for the following five values of the reduced oscillation frequency F ¼ f e=f s (where f s is the

Strouhal number, i.e. the nondimensional vortex shedding frequency of flow past a stationary cylinder): (i) f e=f s ¼ 1

(resonant forcing), (ii) f e=f s ¼ 0:9, (iii) f e=f s ¼ 0:8, (iv) f e=f s ¼ 1:1, (v) f e=f s ¼ 1:2. Note that here f s ¼ 0:22017, a
value obtained from our two-dimensional simulations. [It is should be mentioned here that decreasing the reduced

frequency F corresponds to increasing the wavelength parameter l=D of the Williamson–Roshko map, see Fig. 3(a) in

Williamson and Roshko (1988).] We have considered therefore resonant forcing, two cases of below resonance forcing,
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and two cases of above resonance forcing. For each frequency of oscillation, we perform a detailed study, first of the

variation of the hydrodynamic force coefficients with the value of the amplitude-over-diameter-ratio A=D, and then of

the variation of the vortex patterns in the wake with A=D.

3.1. Variation of the hydrodynamic force coefficients

For each combination of A=D, F, the flow is computed until a statistical steady state is reached. Then the force in the

y direction (lift force) is computed, and is decomposed into the excitation and inertia force. The excitation force is

always scaled with the dynamic pressure, while for the inertia force we examine scaling both with the acceleration of the

structure and with the dynamic pressure. The force in the x direction (drag force) is also computed, and is decomposed

into its mean and fluctuating part.

3.1.1. Resonant forcing

We consider first the case where the excitation frequency is equal to the natural frequency of vortex shedding (resonant

forcing). Then the flow is locked on to the excitation frequency for any amplitude of oscillation. The variation of the coefficients

CLv, CM , CLa, CL;r:m:s:, and the time-averaged and r.m.s. fluctuation values of the drag coefficient, hCDi and CD;r:m:s:, with

respect to A=D, are shown in Figs. 2–7. We observe that CLv is initially rather insensitive to A=D, and then starts to decrease.
Fig. 3. Inertia force coefficient CM , versus nondimensional excitation amplitude, for F ¼ 1:0.

Fig. 2. Excitation force coefficient CLv, versus nondimensional excitation amplitude, for F ¼ 1:0.
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Fig. 4. Inertia force coefficient CLa, versus nondimensional excitation amplitude, for F ¼ 1:0.

Fig. 5. R.m.s. fluctuation intensity of lift coefficient versus nondimensional excitation amplitude, for F ¼ 1:0.

Fig. 6. Time-averaged drag coefficient versus nondimensional excitation amplitude, for F ¼ 1:0.

L. Kaiktsis et al. / Journal of Fluids and Structures 23 (2007) 1–216
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Fig. 7. R.m.s. fluctuation intensity of drag coefficient versus nondimensional excitation amplitude, for F ¼ 1:0.

Fig. 8. Time-averaged nondimensional power dissipation versus nondimensional excitation amplitude, for F ¼ 1:0.
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For A=D ¼ 0:26, however, CLv abruptly falls to negative values, indicating that energy flows from the cylinder to the flow, i.e.

that the fluid force acts like damping on the structure. The value of CLv remains negative as A=D is increased, until, for

A=D ¼ 0:42, a new jump is observed, this time towards positive values. Then CLv smoothly decreases and vanishes at about

A=D ¼ 0:55. In fact, this part of the curve seems like a continuation of the initial part of the curve, suggesting that the abrupt

changes correspond to transitions between two different modes of vortex shedding.

After the first transition, the average and fluctuating part of the drag coefficient are also reduced (see Figs. 6 and 7).

The second transition is accompanied by a sudden increase in the mean and fluctuating drag components. We have

calculated the nondimensional mean power dissipation in the flow as a function of A=D (Fig. 8). The dissipation seems

to level off after the sudden drop in the mean drag coefficient, indicating a less energetic flow with reduced fluctuations

of velocity and pressure. After the second abrupt change of the forces, the mean dissipation increases rapidly with A=D

again. Overall, the mean dissipation varies with A=D much more smoothly than the hydrodynamic force coefficients.

In the region of reduced drag, the added mass coefficient CM is fairly close to one (Fig. 3). Conversely, for small

values of A=D, CM obtains high negative values and it appears to tend to minus infinity when A=D! 0. This is due to

the fact that, for small values of A=D, there is a finite force in phase with the acceleration, whose amplitude is nearly

constant, and not proportional to the acceleration of the cylinder. The singular behavior can be eliminated readily if we

simply re-scale FM in Eq. (5) with the dynamic pressure (see Eq. (6) and the corresponding results in Fig. 4).
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3.1.2. Forcing at below the natural frequency

We next consider forcing at below the resonant frequency. Two different cases are considered; in the first, the

frequency of oscillation is equal to 0.9 times the natural frequency of vortex shedding, and in the second case equal to

0.8 times the natural frequency of vortex shedding. The variations of CLv, CM , CLa, CL;r:m:s:, CD, and CD;r:m:s: for both

frequencies are shown in Figs. 9–14. In these graphs, the results of the resonant forcing are also included for easy

comparisons.

For non-resonant forcing, for small amplitudes of oscillation, the vortex shedding is not locked on to the excitation

frequency. Lock-in occurs for A=D larger than about 0.1 for f e=f s ¼ 0:9, and for A=D larger than about 0.2 for

f e=f s ¼ 0:8. (We infer therefore that the boundary of the lock-in region in the f e=f s versus A=D plane is nearly a

straight line with slope equal to one.) The onset of lock-in has a very visible effect on all hydrodynamic coefficients

through the fact that the slope of all curves becomes discontinuous there. The variation of all force coefficients with

A=D remains otherwise smooth without any type of discontinuities.

For F ¼ 0:9, the coefficient CLv starts increasing after lock-in has been established, and, after reaching a maximum,

decays and eventually becomes negative (see Fig. 9). Unlike the resonant case, however, the variation is smooth without
Fig. 9. Excitation force coefficient CLv, versus nondimensional excitation amplitude, for different values of reduced excitation

frequency ðFp1Þ.

Fig. 10. Inertia force coefficient CM , versus nondimensional excitation amplitude, for different values of reduced excitation frequency

ðFp1Þ.
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Fig. 11. Inertia force coefficient CLa, versus nondimensional excitation amplitude, for different values of reduced excitation frequency

ðFp1Þ.

Fig. 12. R.m.s. fluctuation intensity of lift coefficient versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFp1Þ.

Fig. 13. Time-averaged drag coefficient versus nondimensional excitation amplitude, for different values of reduced excitation

frequency ðFp1Þ.

L. Kaiktsis et al. / Journal of Fluids and Structures 23 (2007) 1–21 9
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Fig. 14. R.m.s. fluctuation intensity of drag coefficient versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFp1Þ.

Fig. 15. Time-averaged nondimensional power dissipation versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFp1Þ.
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the sudden drop that is present in the case of resonant forcing. The decay of CLv appears to be almost linear with A=D.

We note that this overall variation of CLv, i.e. initially negative, then positive and finally negative again, is in qualitative

agreement to what has been reported in experiments at high Reynolds numbers, see Gopalkrishnan (1993).

In Fig. 10 we observe that the added mass coefficient CM remains negative for all values of A=D, suggesting that the

term ‘‘added mass’’ or ‘‘inertia’’ force is not really the most appropriate, since the corresponding component of the

force is not 180 degrees out of phase with the accelaration. The coefficient CM does not exhibit the divergence at zero

A=D that the resonant case exhibits. Still, for low amplitudes, scaling the inertia force with the dynamic pressure

(Fig. 11) gives more meaningful values for the nondimensional coefficient CLa, and seems overall preferable.

For below resonant forcing, the average drag coefficient increases monotonically with A=D after lock-in (Fig. 13).

The drag fluctuations are increasing functions of A=D, with a drop at lock-in (Fig. 14). The mean power dissipation in

the flow (Fig. 15) also does not exhibit dramatic changes, and keeps increasing with the A=D ratio after lock-in,

suggesting that the vortex patterns in the wake remain qualitatively the same for all values of A=D. This is confirmed by

computer visualizations (see below).
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Fig. 16. Excitation force coefficient CLv, versus nondimensional excitation amplitude, for different values of reduced excitation

frequency ðFX1Þ.

Fig. 17. Inertia force coefficient CM , versus nondimensional excitation amplitude, for different values of reduced excitation frequency

ðFX1Þ.
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3.1.3. Forcing at above the natural frequency

We finally consider forcing at above the resonant frequency. Two different cases are included, f e=f s ¼ 1:1, and
f e=f s ¼ 1:2. Variation of CLv, CM , CLa, CL;r:m:s:, CD, and CD;r:m:s: is shown in Figs. 16–21. The results of resonant

forcing are also included for comparison. In both cases, the onset of lock-in, unlike the below resonant forcing, does not

cause any discontinuities in the variation of the force coefficients. Also unlike the below resonant forcing, the variation

of the force coefficients with A=D is complex and non-monotonic. The coefficient CLv exhibits the sharpest variations.

All force coefficients however show discontinuities in their derivatives (easily identified in the plots), indicating that the

flow passes through different flow states. The values of CM are relatively close to the value of one for small amplitude

oscillations, but deviate at higher values of A=D. The variation of the mean power dissipation in the flow with the

reduced amplitude is shown in Fig. 22. In the above resonance forcing cases, there is a range of amplitude for which the

flow settles to a less energetic state. This range seems to decrease with increasing F.

3.2. Visualization of the flow in the wake

We have made several visualizations of the flow in the wake behind the oscillating cylinder. We have included only

the most representative visualizations. The criteria of selection are (a) the visualization corresponds to a combination of
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Fig. 18. Inertia force coefficient CLa, versus nondimensional excitation amplitude, for different values of reduced excitation frequency

ðFX1Þ.

Fig. 19. R.m.s. fluctuation intensity of lift coefficient versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFX1Þ.
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frequency and amplitude related to a drastic change of the hydrodynamic force coefficients, or (b) the flow pattern in

the wake changes drastically without some corresponding change of the hydrodynamic force coefficients. In all

visualizations presented, the instantaneous displacement of the cylinder is equal to zero ðZ=D ¼ 0Þ. The flow

visualizations demonstrate that variations of the forces on the cylinder are related to changes in the flow patterns in the

wake, although it is also apparent that the relation is by no means straightforward. Things are further complicated by

the fact that changes in the flow state in the wake, especially if they occur at a distance behind the cylinder, do not

necessarily cause changes in the forces on the cylinder.

In this subsection, we will also make a comparison between what we observe here and the three basic patterns

observed experimentally by Williamson and Roshko (1988), which we summarize here for easy reference: (a) a 2S type

of vortex street, in which single vortices are formed on both sides of the cylinder, (b) an S+P type of vortex street, in

which a single vortex is formed on one side of the cylinder, and a pair of vortices of opposite sign on the other side, and

(c) a 2P type of vortex street, in which pairs of vortices of opposite sign are formed on both sides of the cylinder.

3.2.1. Resonant forcing

In Figs. 23(a)–(e) five different visualizations can be seen for the case of resonant forcing, which correspond to values

of A=D equal to 0:14; 0:22; 0:35; 0:42 and 0.50, respectively. In Fig. 23(a) (snapshot for an A=D value before the first flow
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Fig. 20. Time-averaged drag coefficient versus nondimensional excitation amplitude, for different values of reduced excitation

frequency ðFX1Þ.

Fig. 21. R.m.s. fluctuation intensity of drag coefficient versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFX1Þ.
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bifurcation), we see a vortex street that starts as a 2S vortex street behind the cylinder. Farther downstream, vortices of

the same sign merge forming vortices of larger area, and the wake widens. Fig. 23(b) shows a snapshot right before the

first flow bifurcation. The vortex wake is qualitatively similar to the one seen in 23(a), with the important difference that

the vortex merging occurs closer to the cylinder. Farther downstream, vortices of opposite sign are paired forming

dipoles that move away from the center of the wake (in this case towards the upper side). Thus, the vortex street that

started as 2S mode has turned into a single row of dipoles. This non-symmetric vortex street is characterized by a non-

zero mean lift (time-averaged lift coefficient values of the order of 0.03).

Fig. 23(c), on the other hand, shows a snapshot after the first bifurcation, which is characterized by a ‘‘regular’’ 2S

type vortex street. In consistency with the reduced mean drag, we observe a reduced width of the wake. Fig. 23(d) is a

snapshot taken at the second bifurcation, and shows a wake in which the formation of dipoles starts almost immediately

behind the cylinder. Unlike Figs. 23(a) and (b) however, dipoles are formed on both sides of the wake in an apparently

random manner, indicative of a disordered vortex street.

Finally, Fig. 23(e), taken after the second bifurcation, shows yet another type of vortex wake, which could be described as a

‘‘partial S+P’’ mode, in the sense that on the one side of the wake (the upper in this instance) we see the appearance of vortex
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Fig. 22. Time-averaged nondimensional power dissipation versus nondimensional excitation amplitude, for different values of reduced

excitation frequency ðFX1Þ.
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pairs, whereas on the other side (the lower) we see only single vortices. In reality, however, the pattern is much more complex

and can be visualized best through animations of the results. Animations thus show that, at each cycle of vortex shedding, the

vortex in the lower side splits into two vortices. The smaller vortex of the two is drawn to the upper side, whereas the larger

remains in the lower side. The smaller vortex is accelerated by the induced velocity field of the larger vortices of opposite sign,

and surpasses one by one the larger vortices. So, what appears in an instantaneous visualization as a ‘‘partial S+P’’ mode is in

fact a ‘‘2S’’ mode modified by the vortex splitting process. Vortex splitting is therefore the mechanism by which these

asymmetric vortex wakes are created. This type of vortex wake has not been reported before in the literature, as far as we

know. In the rest of the paper we will refer to this mode of vortex shedding as a ‘‘partial S+P’’ for brevity.

Farther downstream, there is merging between single vortices of the same sign. Moreover, the positive vortices that were

initially drawn into the upper part of the wake return in the far field to the lower side. The wake remains however non-

symmetric with respect to the centerline. The asymmetric wake structure after the second bifurcation results again in non-zero

mean lift (the time-averaged lift coefficient value is 0.133 for A=D ¼ 0:44, increasing monotonically to 0.184 for A=D ¼ 0:60).
3.2.2. Forcing at below the natural frequency

Figs. 24(a)–(d) show characteristic vortex streets behind a cylinder at below resonant forcing f e=f s ¼ 0:9, for values
of the parameter A=D equal to 0:05; 0:12; 0:30 and 0.50, respectively. The first snapshot shows the vortex street for an

amplitude of oscillation that is too low to cause lock-in. The vortex street starts as an orderly 2S type, which ends up

disordered in the far wake. The snapshot in Fig. 24(b) shows the wake for an amplitude just over the threshold for lock-

in. We observe a classical 2S type vortex street. The snapshots in Figs. 24(c) and (d) show wakes for lock-in states at

higher amplitudes. In both figures, we see vortex streets of the 2S type. Downstream vortices of the same type

conglomerate to form a two-shear-layer type of wake. Figs. 24(c) and (d) are remarkably similar; the only discernible

difference is that, in the lock-in state at higher amplitude [Fig. 24(d)], the vortex street retains its 2S identity farther

downstream than the one at lower amplitude [Fig. 24(c)]. Visualizations of the flow for f e=f s ¼ 0:8 are presented in

Figs. 25(a)–(d) for values of A=D equal to 0.06, 0.12 (both below the threshold for lock-in), 0.20 and 0.50 (above the

threshold for lock-in). We can identify the same qualitative behavior as in Figs. 24(a)–(d).
3.2.3. Forcing at above the natural frequency

Figs. 26(a)–(f) show six representative flow visualizations for f e=f s ¼ 1:1. The values of A=D at which the snapshots

were taken are, respectively, 0:10; 0:20; 0:28; 0:40; 0:50, and 0.56. We found it appropriate to include six visualizations

because of the great variety of vortex configurations that we observed for oscillation frequencies above the natural

frequency. Unlike the f e=f so1 cases, it is not easy to determine the onset of lock-in, because the flow for f e=f s ¼ 1:1 is

not periodic. We thus used the following definition for the onset of lock-in (Karniadakis and Triantafyllou, 1989): we

consider that lock-in starts at the value of A=D at which the peak at f e in the spectrum of the lift force becomes larger
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Fig. 23. Instantaneous vorticity isocontours, for different values of nondimensional excitation amplitude for F ¼ 1:0: (a) A=D ¼ 0:14,
(b) A=D ¼ 0:22, (c) A=D ¼ 0:35, (d) A=D ¼ 0:42, (e) A=D ¼ 0:50.
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than the peak at f s. Based on this definition, the onset of lock-in for f e=f s ¼ 1:1 was determined to occur for

A=D ¼ 0:18. In Fig. 26(a), which describes a non-lock-in state, we see a regular 2S vortex street behind the cylinder,

which becomes considerably more complicated farther downstream. A similar structure, more complicated in the

downstream region, is observed in Fig. 26(b), corresponding to a state slightly above lock-in (still quasi-periodic in

time). The form of the vortex street is quite more complicated at higher A=D values [Figs. 26(c)–(e)], with pairs

of vortices as well as single vortices being formed while the wake opens up. The observed disordered vortex streets

cannot be classified as 2S, S+P nor 2P. Finally, for A=D ¼ 0:56 [Fig. 24(f)], the vortex street becomes more ordered

again, reminiscent of the double shear layer type of wake that we observed for forcing frequencies below the natural

frequency.

In Figs. 27(a)–(f) we show six snapshots for f e=f s ¼ 1:2. The values of A=D at which the snapshots were taken are,

respectively, 0:10; 0:18; 0:26; 0:36; 0:46, and 0.60. Figs. 27(a)–(f) follow the same trends as Figs. 26(a)–(f), with very

unusual vortex patterns being observed. We have no explanation yet as to why are the flow states produced by forcing

frequencies above the natural so more complicated than either the resonant or below resonant forcing.
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Fig. 24. Instantaneous vorticity isocontours, for different values of nondimensional excitation amplitude for F ¼ 0:9: (a) A=D ¼ 0:05,
(b) A=D ¼ 0:12, (c) A=D ¼ 0:30, (d) A=D ¼ 0:50.
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4. Conclusions

We presented numerical results for the variation of the forces on an oscillating cylinder as a function of the

amplitude-over-diameter-ratio, for several different frequencies of oscillation. The amplitude of oscillation was varied

systematically from zero up to the value at which the excitation force becomes negative (i.e. the excitation becomes

damping), because this is the maximum amplitude that can be observed in vortex-induced vibrations. Due to the low

value of the Reynolds number of the simulation (400), this occurs when the amplitude becomes about half a diameter.

At higher Reynolds numbers, typical of actual applications, the corresponding value of the amplitude is about one

diameter, i.e. twice as much. Thus, the low Reynolds number (and two-dimensionality) of the simulation prohibits

direct application of our results for the prediction of vortex-induced vibrations of real structures. We believe, however,

that our conclusions are of interest in the development of models for the forces on real structures.

Three different cases have been considered, oscillation of the cylinder at the natural frequency of vortex shedding for

a stationary cylinder (resonant forcing), oscillation at a frequency below the natural frequency (below resonance

forcing), and oscillation at a frequency above the natural frequency (above resonance forcing). Two frequencies below

and two frequencies above resonance have been considered. We observed that the dynamics of the flow is very different

below resonance and above resonance. This has also been reported in the numerical simulations of Anagnostopoulos

(2000), at low Reynolds numbers, and in the experiments of Carberry et al. (2005), at much higher Reynolds numbers.

In our simulations, there are two main qualitative differences between the results for below resonance, and those for

resonant and above resonance forcing, not reported before. The first difference is that, below resonance, there is a

smooth variation of the hydrodynamic coefficients with the amplitude-to-diameter-ratio A=D. The only discontinuity is

in the slope of the coefficients, observed at the value of A=D for which lock-in starts (this gives an easy way to
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Fig. 25. Instantaneous vorticity isocontours, for different values of nondimensional excitation amplitude for F ¼ 0:8: (a) A=D ¼ 0:06,
(b) A=D ¼ 0:12, (c) A=D ¼ 0:20, (d) A=D ¼ 0:50.
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unambiguously determine the onset of lock-in). For resonant and above resonance forcing, on the other hand, there are

several discontinuities in the variation of the hydrodynamic force coefficients with A=D, not related to the onset of lock-

in. The onset of lock-in in fact has no easily visible effect on the forces. The resonant forcing seems unique (or singular)

in that humps are observed in all hydrodynamic coefficients, at the same values of A=D. Above resonance, changes of

the hydrodynamic coefficients appear in a sharp but continuous manner, whereas the derivatives of the hydrodynamic

coefficients are discontinuous.

The second important difference is that, below resonance, we only observed 2S modes of vortex shedding, which,

once lock-in occurs, correspond to time-periodic and spatially ordered vortex streets. Above resonance, on the other

hand, other non-periodic in time and spatially disordered vortex streets are present. A ‘‘partial S+P’’ mode has been

observed for resonant forcing at high amplitude. We termed this ‘‘partial’’, in the sense that the wake starts with two

single vortices, however one of them splits into two, and the small vortex originating from the splitting enters the other

side of the wake. Two sharp transitions occur for resonant forcing. After the first one, at A=D ¼ 0:26, the average drag
coefficient drops slightly below that of the stationary cylinder. The second transition (from a 2S mode to the more

complex ‘‘partial S+P’’ pattern) is accompanied by an increase of the width of the wake and of the average drag

coefficient. In many cases, the emergence of complicated vortex patterns at a distance downstream from the cylinder

was not associated with any consistently observed change of the hydrodynamic force coefficients.

Regarding the scaling of the forces acting on the cylinder, we note that, using the concept of an inertia force for the

component of the lift force that is 180 degrees out of phase with the acceleration does not seem physically justified. This

is based on the observation that the ‘‘added mass’’ coefficient CM has positive values close to unity only for resonant

and above resonance forcing, and only for a certain range of values of A=D. We conclude therefore that scaling both
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Fig. 26. Instantaneous vorticity isocontours, for different values of nondimensional excitation amplitude for F ¼ 1:1: (a) A=D ¼ 0:10,
(b) A=D ¼ 0:20, (c) A=D ¼ 0:28, (d) A=D ¼ 0:40, (e) A=D ¼ 0:50, (f) A=D ¼ 0:56.
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components of the lift force with the dynamic pressure, in other words using coefficients CLv and CLa, in lieu of CLv and

CM , is overall preferable. This conclusion is in agreement with earlier work by Sarpkaya [see Sarpkaya (2004), for a

summary], and we believe that it carries through to higher Reynolds numbers as well.

Comparing our results to the experiments of Williamson and Roshko (1988), which are at almost the same Reynolds

number, we observe the following: first the value of the Strouhal number in our simulation of the flow past

the stationary cylinder is about 10% higher than the experimental one, as is to be expected since our simulation is
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Fig. 27. Instantaneous vorticity isocontours, for different values of nondimensional excitation amplitude for F ¼ 1:2: (a) A=D ¼ 0:10,
(b) A=D ¼ 0:18, (c) A=D ¼ 0:26, (d) A=D ¼ 0:36, (e) A=D ¼ 0:46, (f) A=D ¼ 0:60.
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two-dimensional. Our parameter F ¼ f e=f s has been based on the computed Strouhal number. The question then is

how do the two-dimensional simulation results compare with the experimental ones for the same values of the frequency

ratio F. Our results agree with the experiments in that we also observed the 2S mode for resonant forcing. There is

no mention in Williamson and Roshko (1988), however, of any of the complex flow patterns and transitions that

we observed for F ¼ 1 and F41, at least not for the amplitudes of oscillation that we considered. (They have re-

ported more complex patterns at higher amplitudes.) It is not clear as yet whether this difference is due to the
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two-dimensionality of our simulations. One way to settle this issue would be by performing three-dimensional

simulations for the same values of the reduced frequency and amplitude of oscillations that we observed the complex

vortex patterns, and compare the outcome. Finally, as far as vortex dynamics is concerned, our main finding is the

formation of the asymmetric ‘‘partial S+P’’ mode, which results from a vortex splitting instability. It is worth

investigating whether this mode is also present in three dimensions.
Appendix A. Resolution tests

Our resolution tests were performed for the case of resonant forcing ðf e ¼ f sÞ, for A=D ¼ 0:50. As the flow gradients

are in general sharper at higher oscillation amplitudes, we believe that the adequacy of discretization is also justified for

the lower amplitude values of the present study.

First, we performed temporal resolution tests. Here, we have used the standard spatial discretization, consisting of

464 macro-elements, with 9� 9 elemental resolution. Four values of the numerical time step were tested, namely

Dt ¼ 0:00075, 0.0015, 0.00225, and 0.0030. The computed force coefficient values are reported in Table 1. The numbers

show that the deviations between the highest resolution results ðDt ¼ 0:00075Þ and all others are in most cases in the

third decimal point. This suggests that the values of Dt that we have used throughout the paper ðDtp0:0015Þ correspond
to practically negligible temporal discretization errors.

Next, we performed spatial resolution tests, corresponding to p-type of mesh refinement. Here, Dt ¼ 0:0015. We have

maintained the standard spectral element skeleton (464 macro-elements), and used different polynomial degrees,

corresponding to 7� 7, 9� 9, and 11� 11 elemental resolution. The computed values of the force coefficients are

reported in Table 2. Again, the results show negligible differences between the highest resolution ð11� 11Þ and the other

two. This illustrates the adequacy of the spatial resolution (464 macro-elements with 9� 9 elemental resolution) used

throughout the paper.
Table 1

Temporal resolution tests, for F ¼ 1:0, A=D ¼ 0:50: computed values of force coefficients, for different values of the numerical time

step

Dt Clv CM Cla CD CD;r:m:s: CL CL;r:m:s:

0.000750 0.2183846 �0.9066322 �1.362657 2.05414 0.651524 0.165215 0.996396

0.001500 0.2161986 �0.9035547 �1.358031 2.05535 0.651788 0.166407 0.993117

0.002250 0.2141826 �0.9000216 �1.352721 2.05595 0.651869 0.167618 0.989255

0.003000 0.2119567 �0.8976544 �1.349163 2.05734 0.651926 0.169330 0.986695

Table 2

Spatial resolution tests, for F ¼ 1:0, A=D ¼ 0:50: computed values of force coefficients, for different values of elemental resolution

Resolution Clv CM Cla CD CD;r:m:s: CL CL;r:m:s:

7� 7 0.2102251 �0.8868189 �1.332878 2.05550 0.650862 0.161505 0.978883

9� 9 0.2161986 �0.9035547 �1.358031 2.05535 0.651788 0.166407 0.993117

11� 11 0.2193779 �0.9227460 �1.386876 2.06052 0.648169 0.167330 1.012410
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